

- 1 UNIQUE ROLE OF JELLYFISH IN THE PLANKTON ECOSYSTEM
- 2 REVEALED USING A GLOBAL OCEAN BIOGEOCHEMICAL
- 3 MODEL
- 4 **Authors:** Rebecca Mary Wright^{1, 2}, Corinne Le Quéré¹, Erik Buitenhuis¹, Sophie Pitois²,
- 5 Mark Gibbons³
- 6 ¹Tyndall Centre for Climate Change Research, School of Environmental Sciences, University
- 7 of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
- 8 ²Centre for Environment, Fisheries & Aquaculture Science Pakefield Road, Lowestoft,
- 9 Suffolk NR33 0HT, UK
- 10 ³Department of Biodiversity and Conservation Biology, University of the Western Cape,
- 11 Private Bag X17, Bellville 7535, RSA

- 13 rebecca.wright@uea.ac.uk
- 14 c.lequere@uea.ac.uk
- e.buitenhuis@uea.ac.uk
- 16 sophie.pitois@cefas.co.uk
- 17 mgibbons@uwc.ac.za

https://doi.org/10.5194/bg-2020-136 Preprint. Discussion started: 30 April 2020 © Author(s) 2020. CC BY 4.0 License.

ABSTRACT

18 19

20 Jellyfish are increasingly recognised as important components of the marine ecosystem, yet their specific role is poorly defined compared to that of other zooplankton groups. This paper presents the 21 first global ocean biogeochemical model that includes an explicit representation of jellyfish, and uses 22 23 the model to gain insight into the influence of jellyfish on the plankton community. The PlankTOM11 model groups organisms into Plankton Functional Types (PFT). The jellyfish PFT is parameterised 24 25 here based on our synthesis of observations on jellyfish growth, grazing, respiration and mortality rates as functions of temperature and on jellyfish biomass. The distribution of jellyfish is unique 26 compared to that of other PFTs in the model. The jellyfish global biomass of 0.13 PgC is within the 27 28 observational range, and comparable to the biomass of other zooplankton and phytoplankton PFTs. 29 The introduction of jellyfish in the model has a large direct influence on the crustacean 30 macrozooplankton PFT, and influences indirectly the rest of the plankton ecosystem through trophic cascades. The zooplankton community in PlankTOM11 is highly sensitive to the jellyfish mortality 31 32 rate, with jellyfish increasingly dominating the zooplankton community as its mortality diminishes. Overall the results suggest that jellyfish play an important and unique role in regulating marine 33 34 plankton ecosystems, which has been neglected so far.

1. INTRODUCTION

35 36

37 Gelatinous zooplankton are increasingly recognised as influential organisms in the marine 38 environment, not just for the disruptions they can cause to coastal economies (fisheries, aquaculture, beach closures and power plants etc.; Purcell et al., 2007), but also as important consumers of 39 40 plankton (Lucas and Dawson, 2014), a food source for many marine species (Lamb et al., 2017) and 41 as key components in marine biogeochemical cycles (Crum et al., 2014; Lebrato et al., 2012). The 42 term gelatinous zooplankton can encompass a wide range of organisms across three phyla: Tunicata (salps), Ctenophora (comb-jellies), and Cnidaria (true jellyfish). This study focuses on Cnidaria 43 44 (including Hydrozoa, Cubozoa and Scyphozoa), which contribute 92% of the total global biomass of 45 gelatinous zooplankton (Lucas et al., 2014). The other gelatinous zooplankton groups, Tunicata and Ctenophora, are excluded from this study because there are far fewer data available on their biomass 46 47 and vital rates than for Cnidaria, and they only contribute a combined global biomass of 8% of total gelatinous zooplankton (Lucas et al., 2014). Cnidaria are both independent enough from other 48 49 gelatinous zooplankton, and cohesive enough to be represented as a single Plankton Functional Type (PFT) for global modelling (Le Quéré et al., 2005). For the rest of this paper pelagic Cnidaria are 50 51 referred to as jellyfish. 52 Jellyfish exhibit a radially symmetrical body plan and are characterised by a bell-shaped body 53 (medusae). Swimming is achieved by muscular, "pulsing" contractions and animals have one opening 54 for both feeding and excretion. Most scyphozoans and cubozoans, and many hydrozoans, follow a 55 meroplanktonic life cycle. A sessile (generally) benthic polyps buds off planktonic ephyrae asexually. 56 These, in turn, grow into medusae that reproduce sexually to generate planula larvae, which then settle and transform into polyps. Within this general life cycle, there is large reproductive and life 57 58 cycle variety, including some holoplanktonic species that skip the benthic polyp stage as well as holobenthic species that skip the pelagic phase, and much plasticity (Boero et al., 2008; Lucas and 59 Dawson, 2014). 60 61 Jellyfish are significant consumers of plankton, feeding mostly on zooplankton using tentacles and/or 62 oral arms containing stinging cells called nematocysts (Lucas and Dawson, 2014). The large body size 63 to carbon content ratio of jellyfish creates a low maintenance, large feeding structure, which, because they do not use sight to capture prey, allow them to efficiently clear plankton throughout 24 hours 64 65 (Acuña et al., 2011; Lucas and Dawson, 2014). Jellyfish are connected to lower trophic levels, with the ability to influence the plankton ecosystem structure and thus the larger marine ecosystem through 66 67 trophic cascades (Pitt et al., 2007, 2009; West et al., 2009). Jellyfish have the ability to rapidly form 68 large high-density aggregations known as blooms that can temporarily dominate local ecosystems (Graham et al., 2001; Hamner and Dawson, 2009). Jellyfish contribute to the biogeochemical cycle 69

70 through two main routes; from life through feeding processes, including the excretion of faecal 71 pellets, mucus and messy-eating, and from death, through the sinking of carcasses (Chelsky et al., 72 2015; Lebrato et al., 2012, 2013a; Pitt et al., 2009). The high biomass achieved during jellyfish 73 blooms, and the rapid sinking of excretions from feeding and carcasses from such blooms, make them 74 a potentially significant vector for carbon export (Lebrato et al., 2013a, 2013b). Anthropogenic impacts from climate change, such as increasing temperature and acidity (Rhein et al., 75 76 2013), and fishing, through the removal of predators and competitors (Doney et al., 2012), impact the plankton including jellyfish (Boero et al., 2016; but see Richardson and Gibbons, 2008). Multiple co-77 78 occurring impacts make it difficult to understand the role of jellyfish in the marine ecosystem, and 79 how the role may be changed by the co-occurring impacts. The paucity of historical jellyfish biomass 80 data, especially outside of the Northern Hemisphere, has made it difficult to establish jellyfish global spatial distribution, biomass and trends from observations (Brotz et al., 2012; Condon et al., 2012; 81 Gibbons and Richardson, 2013; Lucas et al., 2014; Pitt et al., 2018). 82 Models are useful tools to help understand the interactions of multiple complex drivers in the 83 84 environment. This paper describes the addition of jellyfish to the PlankTOM10 global ocean 85 biogeochemical model, which we call PlankTOM11. PlankTOM10 represents explicitly 10 PFTs; six 86 phytoplankton, one bacteria and three zooplankton (Le Quéré et al., 2016). The three zooplankton 87 groups are protozooplankton (mainly heterotrophic flagellates and ciliates), mesozooplankton (mainly 88 copepods) and macrozooplankton (as crustaceans; see Table 1 for definitions). Jellyfish is therefore 89 the fourth zooplankton group and 11th PFT in the PlankTOM model series. It introduces an additional 90 trophic level to the ecosystem. To our knowledge, this is the first and only representation of jellyfish 91 in a global ocean biogeochemical model at the time of writing. PlankTOM11 is used to help quantify 92 global jellyfish biomass and the role of jellyfish for the global plankton ecosystem.

93

2. METHODS

2.1. PLANKTOM11 MODEL DESCRIPTION

95 96

94

PlankTOM11 was developed starting from 10 PFT version of the PlankTOM model series (Le Quéré et al., 2016), by introducing jellyfish as an additional trophic level at the top of the plankton food web (Fig. 1). A full description of PlankTOM10 is published in Le Quéré et al. (2016), including all equations and parameters. Here we provide an overview of the model development, focussing on the parameterisation of the growth and loss rates of jellyfish and how these compare to the other macrozooplankton group. We also describe the update of relationship used to describe the growth rate

134

103 as a function of temperature and subsequent tuning. Growth rate is the only parameterisation that 104 changed since the previous version of the model (Le Quéré et al., 2016). 105 PlankTOM11 is a global ocean biogeochemistry model that simulates plankton ecosystem processes and their interactions with the environment through the representation of 11 PFTs (Fig. 1). The 11 106 107 PFTs consist of six phytoplankton (picophytoplankton, nitrogen-fixing cyanobacteria, coccolithophores, mixed phytoplankton, diatoms and Phaeocystis), bacteria, and four zooplankton 108 109 (Table 1). Physiological parameters are fixed within each PFT, and therefore, within-PFT diversity is 110 not included. Spatial variability within PFTs is represented through parameter-dependence on 111 environmental conditions including temperature, nutrients, light and food availability. 112 The model contains 39 biogeochemical tracers, with full marine cycles of key elements carbon, oxygen, phosphorus and silicon, and simplified cycles of nitrogen and iron. There are three detrital 113 114 pools: dissolved organic carbon (OC), small particulate OC, and large particulate OC. The elements 115 enter through riverine fluxes and are cycled and generated through the PFTs via feeding, fecal matter, messy-eating and carcasses (Buitenhuis et al., 2006, 2010, 2013a; Le Quéré et al., 2016). Model 116 parameters are based on observations where available. A global database of PFT carbon biomass that 117 was designed for model studies (Buitenhuis et al., 2013b) and global surface chlorophyll from satellite 118 119 observations (SeaWiFS) are used to guide the model developments. 120 The PlankTOM11 marine biogeochemistry component is coupled online to the global ocean general circulation model Nucleus for European Modeling of the Ocean version 3.5 (NEMO v3.5). We used 121 122 the global configuration with a horizontal resolution of 2° longitude by a mean resolution of 1.1° latitude using a tripolar orthogonal grid. The vertical resolution is 10m for the top 100m, decreasing to 123 124 a resolution of 500m at 5km depth, and a total of 30 vertical z-levels (Madec, 2013). The ocean is 125 described as a fluid using the Navier-Stokes equations and a nonlinear equation of state (Madec, 2013). NEMO v3.5 explicitly calculates vertical mixing at all depths using a turbulent kinetic energy 126 127 model and sub-grid eddy induced mixing. The model is interactively coupled to a thermodynamic seaice model (LIM version 2; Timmermann et al., 2005). 128 129 The temporal (t) evolution of zooplankton concentration (Z_i) , including the jellyfish PFT, is described through the formulation of growth and loss rates as follows: 130 $\frac{\partial Z_j}{\partial t} = \sum_k g_{F_k}^{Z_j} \times F_k \times MGE \times Z_j - \sum_{k=1}^4 g_{Z_j}^{Z_k} \times Z_k \times Z_j - R_{0^{\circ}}^{Z_j} \times d_{Z_j}^T \times Z_j$ 131 (1) $growth\ through\ grazing\ -\ loss\ through\ grazing\ -\ basal\ respiration$ 132 $-m_{0^{\circ}}^{Z_j} \times c_{Z_j}^T \times \frac{Z_j}{K^{Z_j} + Z_i} \times \sum_i P_i$

- mortality

For growth through grazing, $g_{F_k}^{Z_j}$ is the grazing rate by zooplankton Z_j on food source F_k and MGE is 135 the growth efficiency. For loss through grazing, $g_{Z_i}^{Z_k}$ is the grazing of other zooplankton on Z_j . For 136 basal respiration, $R_{0^{\circ}}^{Z_{j}}$ is the respiration rate at 0°C, T is temperature, $d_{Z_{j}}$ is the temperature 137 dependence of respiration ($d^{10} = Q_{10}$). Mortality is the closure term of the model, and is mostly due 138 to predation by higher trophic levels than are represented by the model. $m_{00}^{Z_j}$ is the mortality rate at 139 0° C, c_{Z_i} is the temperature dependence of the mortality ($c^{10} = Q_{10}$) and K^{Z_j} is the half saturation 140 constant for mortality. $\sum P_i$ is the sum of all PFTs, excluding bacteria, and is used as a proxy for the 141 142 biomass of predators not explicitly included in the model. More details on each term are provided 143 below.

144

145

2.1.1. PFT Growth

Growth rate is the trait that most distinguishes PFTs in models (Buitenhuis et al., 2006, 2013a).

Jellyfish growth rates were compiled as a function of temperature from the literature. In previous

published versions of the PlankTOM model, growth as a function of temperature (μ^T) was fitted with

149 two parameters:

150
$$\mu^T = \mu_0 \times Q_{10}^{\frac{T}{10}} \tag{2}$$

where μ_0 is the growth at 0°C, Q_{10} is the temperature dependence of growth derived from

observations, and T is the temperature (Le Quéré et al., 2016). Jellyfish growth rate is poorly captured

153 by an exponential fit to temperature. To better capture the observations, the growth calculation has

by an exponential fit to temperature. To better capture the observations, the growth calculation has

now been updated with a three-parameter growth rate, which produces a bell-shaped curve centred

around an optimal growth rate at a given temperature (Fig. 2 and Table 2). The three-parameter fit is

suitable for the global modelling of plankton because it can represent an exponential increase if the

data support this (Schoemann et al., 2005). The growth rate as a function of temperature (μ^T) is now

defined by; the optimal temperature (T_{opt}) , maximum growth rate (μ_{max}) at T_{opt} , and the temperature

interval (dT):

160
$$\mu^T = \mu_{max} \times exp \left[\frac{-(T - T_{opt})^2}{dT^2} \right]$$
 (3)

161 The available observations measure growth rate, but the model requires specification of the grazing

rate (Eq. 1). Growth of zooplankton and grazing (g^T) are related through the gross growth efficiency

163 (GGE):

$$g^T = \frac{u^T}{GGF} \tag{4}$$

165 GGE is the portion of grazing that is converted to biomass, which was obtained from the literature (Moriarty, 2009).

167

168

2.1.2. Jellyfish PFT Grazing

169 The food web, and thus the trophic level of PFTs is determined through grazing preferences. The 170 relative preference of jellyfish zooplankton for the other PFTs was determined through a literature search (Colin et al., 2005; Flynn and Gibbons, 2007; Malej et al., 2007; Purcell, 1992, 1997, 2003; 171 172 Stoecker et al., 1987; Uye and Shimauchi, 2005). The dominant food source was mesozooplankton (specifically copepods), followed by proto-zooplankton and then macrozooplankton (Table 3). There 173 is little evidence in the literature for jellyfish actively consuming autotrophs. One of the few pieces of 174 175 evidence is a gut content analysis where 'unidentified protists... some chlorophyll bearing' were found (Colin et al., 2005). Another is a study by Boero et al. (2007) which showed that very small 176 177 medusae such as Obelia will consume bacteria, but not necessarily actively. The ephyrae stage of scyphozoans are likely to have a higher clearance rate of autotrophs, due to their smaller size, but this 178 179 will have a minimal effect on the overall preferences and the biomass consumed. Table 3 shows the 180 relative preference of jellyfish for its prey assigned in the model, along with the preferences of the 181 other zooplankton PFTs. The preference ratios are weighted using the global carbon biomass for each 182 type, calculated from the MAREDAT database, following the methodology used for the other PFTs (Buitenhuis et al., 2013a; Le Quéré et al., 2016). 183

184

185

2.1.3. Jellyfish PFT Respiration

186 Previous analysis of respiration rates of jellyfish found that temperature manipulation experiments 187 with Q_{10} values of >3 were flawed because the temperature was changed too rapidly (Purcell, 2009; Purcell et al., 2010). In a natural environment, jellyfish gradually acclimate to temperature changes 188 189 which has a smaller effect on their respiration rates. Purcell et al. (2010) instead collated values from 190 experiments that measured respiration at ambient temperatures, providing a range of temperature data across different studies. They found that Q10 for respiration was 1.67 for Aurelia species (Purcell, 191 192 2009; Purcell et al., 2010). Moriarty (2009) collated a respiration dataset for zooplankton, including 193 gelatinous zooplankton, using a similar selectivity as Purcell et al. (2010) for experimental temperature, feeding, time in captivity and activity levels. Jellyfish were extracted from the Moriarty 194 195 (2009) dataset, which also included experiments on non-adult and non-Aurelia species medusae, unlike the Purcell et al. (2010) dataset. The relationship between temperature and respiration is 196 heavily skewed by body mass (Purcell et al., 2010). The data was thus normalised by fitting it to a 197

198 general linear model (GLM) using a least squares cost function, to reduce the effect of body mass on
 199 respiration rates (Ikeda, 1985; Le Quéré et al., 2016).

200
$$GLM = log_{10}RR = a + b log_{10}BM + c T$$
 (5)

201

203

204

205206

207

208

$$cost function = \sum \left(\frac{R_{GLM}^T - R_{obs}^T}{R_{obs}^T}\right)^2$$
 (6)

Where RR is the respiration rate, BM is the body mass, and T and R^T are the observed temperature and associated respiration rate. The parameters values were then calculated using $R_0 = e^a$, and $Q_{10} = (e^c)^{10}$, where e is the exponential function. The resulting fit to data is shown in Fig. 3. The parameter values for respiration used in the model are given in Table 4. Macrozooplankton respiration values are also given in Fig. 3 and Table 4, to provide a comparison to another zooplankton PFT of the most similar size available.

209

210

2.1.4. Jellyfish PFT Mortality

There is limited data on mortality rates for jellyfish and to use mortality data from the literature on 211 any zooplankton group some assumptions must be made (Acevedo et al., 2013; Almeda et al., 2013; 212 Malej and Malej, 1992; Moriarty, 2009; Rosa et al., 2013). These assumptions are: that the population 213 214 is in a steady state where mortality equals recruitment, reproduction is constant and that mortality is 215 independent of age (Moriarty, 2009). All models with zooplankton mortality rates follow these 216 assumptions. In reality the mortality of a zooplankton population is highly variable. Steady states are 217 balanced over a long period (if a population remains viable), reproduction is restricted to certain times of year and the early stages of life cycles are many times more vulnerable to mortality. Despite these 218 assumptions, with the limited data on mortality rates, the larger uncertainty lies with the data rather 219 than the assumptions (Moriarty, 2009). The half saturation constant for mortality (K^{Z_j} in Eq. 1) is set 220 to 20 µmol C L⁻¹ the same as other zooplankton types, due to the lack of PFT specific data. In the 221 222 small amount of data available and suitable for use in the model (16 data points from two studies) mortality ranged from 0.006 - 0.026 per day (Acevedo et al., 2013; Malej and Malej, 1992). Applying 223 the exponential fit to this data gave a mortality rate at 0° C ($m_{00}^{Z_j}$ in Eq. 1) of 0.018 per day. Sensitivity 224 tests were carried out from this mortality rate due to low confidence in the value. 225 Results from a subset of the sensitivity tests are shown in Fig. 4. The model was found to best 226 represent a range of observations when jellyfish mortality was increased to 0.12 per day. The fit to 227 mortality for the data ($\mu_0 = 0.018$) and the adjusted mortality ($\mu_0 = 0.12$) is shown in Fig. 3. Mortality 228 229 rate values closer to 0.018 per day allowed jellyfish to dominate macro- and mesozooplankton, greatly

261

262

263

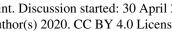
230 reducing their biomass (Fig. 4 and Fig. 5). Low jellyfish mortality also resulted in higher chlorophyll 231 concentrations than observed, especially in the high latitudes (Bar-On et al., 2018; Fig. 4 and Fig. 5; 232 Buitenhuis et al., 2013b). The adjusted mortality rate used for PlankTOM11 may be accounting for 233 several components missing from experimental data including the impact of higher trophic level 234 grazing in the Avecedo et al. (2013) study, which in copepods is 3-4 times higher than other sources 235 of mortality (Hirst and Kiørboe, 2002), the greater vulnerability to mortality experienced during the 236 early stages of the life cycle and mortality due to parasites and viruses, especially during blooms (Pitt 237 et al., 2014). 238 PlankTOM11 uses a mortality rate for jellyfish that is much higher than the limited observations (Fig. 239 4 and Fig. 5). Lower jellyfish mortality is likely to be more representative of adult life stages, as 240 jellyfish experience high mortality during juvenile life stages, especially as planula larvae and during 241 settling (Lucas et al., 2012). The limited observations of jellyfish mortality are from mostly adult organisms, which may explain the dominance of jellyfish in the model when parameterised with the 242 observed mortality fit. The higher mortality used for this study may be more representative of an 243 244 average across all life stages. Experimental jellyfish mortality is also likely to be lower than in situ 245 mortality due to factors such as senescence post-spawning and bloom conditions increasing the prevalence of disease and parasites and thus increasing mortality (Mills, 1993; Pitt et al., 2014). Using 246 247 a higher mortality for this study is therefore deemed reasonable. 248 249 2.1.5. Additional Tuning 250 As shown in Eq. 1, there is a component in the mortality of zooplankton to represent predation by 251 organisms not included in the model. The jellyfish PFT is a significant grazer of macrozooplankton and mesozooplankton (Table 3), to account for this additional grazing the mortality term for 252 253 macrozooplankton and the respiration term for mesozooplankton were reduced compared to model 254 versions where no jellyfish are present (Table 5). Respiration is reduced in place of mortality for 255 mesozooplankton as their mortality term had already been reduced to zero to account for predation by 256 macrozooplankton (Le Quéré et al., 2016). 257 Following the change to the growth rate formulation (from Eq. 2 to Eq. 3), all PFT growth rates are lower compared to the published version of PlankTOM10 (Le Quéré et al., 2016), but the change is 258 259 largest for *Phaeocystis*, diatoms, bacteria and protozooplankton (Fig. 2). Further tuning is carried out

to rebalance the total biomass among phytoplankton PFTs following the change in formulation. The

tuning included increasing the grazing ratio preference of mesozooplankton for Phaeocystis, within

the limits of observations, and increasing the half saturation constant of *Phaeocystis* for iron. The tuning resulted in a reduction of *Phaeocystis* biomass and an increase in diatom biomass, without

265 towards observations. Finally, bacterial biomass was increased closer to observations by reducing the 266 half saturation constant of bacteria for dissolved organic carbon. 267 268 2.1.6. Model Simulations 269 The PlankTOM11 simulations are run from 1920 to 2015, forced by meteorological data including 270 daily wind stress, cloud cover, precipitation and freshwater riverine input from NCEP/NCAR 271 reanalysed fields (Kalnay et al., 1996). The simulations start with a 28-year spin for 1920-1948 where the meteorological conditions for year 1980 are used, looping over a single year. Year 1980 is used as 272 a typical average year, as it has no strong El Nino/La Nina, as in Le Quéré et al. (2010). The spin up is 273 274 followed by interannually varying forcing for actual years from 1948-2015. All analysis is carried out 275 on the average of the last 31-year period of 1985-2015. PlankTOM11 is initialised with observations 276 of dissolved inorganic carbon (DIC) and alkalinity (Key et al., 2004) after removing the anthropogenic component for DIC (Le Quéré et al., 2010), NO₃, PO₄, SiO₃, O₂, temperature and 277 salinity from the World Ocean Atlas (Antonov et al., 2010). 278 279 Two further model simulations were carried out in order to better understand the effect of adding the 280 jellyfish PFT. The first simulation sets the jellyfish growth rate to 0, so that it replicates the 281 PlankTOM10 model set up (Le Quéré et al., 2016) but it includes the updated growth formulation and tuning as presented above. It is labelled 'PlankTOM10' in the figures. This simulation is otherwise 282 283 identical to PlankTOM11 except for the top predator mortality term for meso- and macrozooplankton, 284 which were returned to pre-jellyfish values, to account for the lack of predation by jellyfish. Macrozooplankton mortality was then tuned from this value to account for the change to the growth 285 calculation (Table 5). The second additional simulation is carried out to test the addition of an 11th 286 287 PFT in comparison to the addition of jellyfish as the 11th PFT. This is done by parameterising the 288 jellyfish PFT identically to the macrozooplankton PFT, so that there are 11 PFTs active, with two 289 macrozooplankton. This simulation is called PlankTOM10.5. Otherwise, these simulations were 290 identical to PlankTOM11. 291 2.2. JELLYFISH BIOMASS OBSERVATIONS 292 293 MARine Ecosystem biomass DATa (MAREDAT) is a database of global ocean plankton abundance 294 and biomass, harmonised to common units and is open source available online (Buitenhuis et al., 295 2013b). The MAREDAT database is designed to be used for the validation of global ocean 296 biogeochemical models. MAREDAT contains global quantitative observations of jellyfish abundance


disrupting the rest of the ecosystem. Diatom respiration was also increased to reduce their biomass

297 and biomass as part of the generic macrozooplankton group (Moriarty et al., 2013). The jellyfish sub-298 set of data has not been analysed independently yet. 299 For this study, all MAREDAT records under the group Cnidaria medusae ('true' jellyfish) were 300 extracted from the macrozooplankton group (Moriarty et al., 2013) and examined. The taxonomic 301 level within the database varies from phylum down to species. The data covers the period from August 1930 to August 2008 and contains abundance (individuals/m³, n=107,156) and carbon 302 303 biomass (µg carbon L⁻¹, n=3,406). The carbon biomass data are used over the abundance data despite the fewer data available, as they can be directly compared to PlankTOM11 results. Carbon biomass is 304 305 calculated from wet weight/dry weight conversion factors for species where data records are sufficient 306 (Moriarty et al., 2013). The data were collected at depth ranging from 0 to 2442m. The majority of the 307 data (97%) were collected in the top 200m with an average depth of 44m (± 32m). The original ungridded biomass data were binned into 1°x1° degree boxes at monthly resolution, as in Moriarty et al. 308 309 (2013), reducing the number of gridded biomass data points to 849. In MAREDAT, jellyfish biomass data are only present in the Northern Hemisphere, which is likely to 310 311 skew the data. Another caveat to the data is that a substantially smaller frequency of zeros is reported 312 for biomass than for abundance. Under-reporting of zero values will increase the average, regardless 313 of the averaging method used. Biomass observations from other global studies (Bar-On et al., 2018; 314 Lucas et al., 2014) are used conjunctly with the global jellyfish biomass calculated here because of the 315 poor spatial coverage. 316 To compare to the other PFTs within the MAREDAT database, global jellyfish biomass was calculated according to the methods in Buitenhuis et al. (2013b). Buitenhuis et al. (2013b) calculate a 317 318 biomass range, using the median as the minimum and the arithmetic mean (AM) as the maximum. The jellyfish zooplankton biomass range in MAREDAT was calculated as 0.46 – 3.11 PgC, with the 319 320 median jellyfish biomass almost as high as the microzooplankton and higher than meso- and 321 macrozooplankton (Buitenhuis et al., 2013b). The jellyfish biomass range calculated here is used to 322 validate the new jellyfish component in the PlankTOM11 model. 323 3. RESULTS 3.1. JELLYFISH BIOMASS 324 325 326 The global jellyfish biomass estimated by various studies gives a range of results: 0.1 PgC (Bar-On et 327 al., 2018), 0.32 ± 0.49 PgC (Lucas et al., 2014) and 0.46 PgC calculated in this study (Sect. 2.2). 328 Jellyfish biomass in PlankTOM11 is within the range but towards the lower end of observations at

0.13 PgC, with jellyfish accounting for 16% of the total zooplankton biomass (Table 6). When the

330 modelled biomass was tuned to match the higher observed biomass by adjusting the mortality rate, 331 jellyfish dominate the entire ecosystem significantly reducing levels of the other zooplankton and 332 increasing chlorophyll above observations for the Northern and Southern Hemispheres (Fig. 4 and 333 Fig. 5). 334 PlankTOM11 generally replicates the patterns of jellyfish biomass with observations. High biomass 335 occurs at around 50-60°N across the oceans, with the highest average biomass in the North Pacific 336 (Fig. 6; Lucas et al., 2014). PlankTOM11 also replicates low biomass in the Indian Ocean, and the 337 eastern half of the tropical Pacific shows higher biomass than other open ocean areas in agreement 338 with patterns in observations (Fig. 6; Lucas et al., 2014). The lack of biomass observations around 40°S makes it difficult to determine if the peak in jellyfish biomass in PlankTOM11 at this latitude is 339 340 representative of reality. The maximum biomass in the southern hemisphere is mostly around coastal 341 areas i.e. South America and southern Australia (Fig. 6). This is expected from reports and papers on 342 jellyfish in these areas (Condon et al., 2013 and references therein; Purcell et al., 2007). A prevalence 343 of jellyfish in coastal areas is apparent (Fig. 6), in line with observations (Lucas et al., 2014), even 344 without any specific coastal advantages for jellyfish in the model (see macrozooplankton in Le Quéré 345 et al., 2016). Jellyfish are characterised by their bloom and bust dynamic, resulting in patchy and ephemeral 346 347 biomass. The mean:max biomass ratio of observations (MAREDAT) was compared to the same ratio 348 for PlankTOM11 to assess the replication of this characteristic. The observations give a wide range of ratios depending on the type of mean used. The PlankTOM11 ratio falls within this range, but towards 349 350 the lower end (Table 7). PlankTOM11 replicates some of the patchy and ephemeral biomass of jellyfish. 351 352 Jellyfish biomass in MAREDAT has poor global spatial coverage. The region around the coast of 353 Alaska has the highest density of observations and is used here to evaluate the mean and seasonality 354 of the carbon biomass of jellyfish as represented in PlankTOM11. PlankTOM11 reproduces the 355 observed mean jellyfish biomass around the coast of Alaska (0.16 compared to 0.13 μmol C L⁻¹), but 356 it underestimates the maximum and spread of the observations (Table 8). The spatial patchiness is somewhat replicated in PlankTOM11, although with a smaller variation (Fig. 7). PlankTOM11 357 358 replicates the mean seasonal shape and biomass of jellyfish with a small peak over the summer followed by a large peak in September in the observations and in October in PlankTOM11 (Fig. 7). 359 Overall, PlankTOM11 replicates the mean but underestimates the maximum biomass and temporal 360 361 patchiness of the observations (Fig. 7 and Table 8).

ECOSYSTEM PROPERTIES OF PLANKTOM11

© (i)

363

3.2

364 PlankTOM11 reproduces the main characteristics of surface chlorophyll observations, with high 365 chlorophyll concentration in the high latitudes, low concentration in the subtropics and elevated 366 concentrations around the equator (Fig. 8). PlankTOM11 also reproduces higher chlorophyll 367 368 concentrations in the Northern Hemisphere than the Southern (Fig. 9), and higher concentrations in 369 the southern Atlantic than the southern Pacific Ocean (Fig. 8). Overall the model underestimates 370 chlorophyll concentrations, as is standard with models of this type (Le Quéré et al., 2016) particularly 371 in the central and northern Atlantic. PlankTOM11 also captures the seasonality of chlorophyll, with 372 concentrations increasing in summer compared to the winter for each hemisphere (Fig. 8). 373 To assess the effect of adding jellyfish to PlankTOM, two additional simulations were conducted: PlankTOM10 where jellyfish growth is set to zero and PlankTOM10.5 where all jellyfish parameters 374 are set equal to macrozooplankton parameters (Sect. 2.1.6). The two simulations show similar spatial 375 376 patterns of surface chlorophyll to PlankTOM11, but different concentration levels. PlankTOM11 377 closely replicates the chlorophyll ratio between the north and south with a ratio of 2.12, compared to 378 the observed ratio of 2.16 (Fig. 9). PlankTOM10 and PlankTOM10.5 underestimate the observed ratio with ratios of 1.57 and 1.96 respectively (Fig. 9). Adding an 11th PFT improves the chlorophyll ratio, 379 however, the regional chlorophyll concentrations for PlankTOM10.5 are a poorer match to the 380 observations than PlankTOM11, especially in the north (Fig. 9). PlankTOM10 overestimates the 381 382 observed chlorophyll concentration in the south (0.22 and 0.18 respectively; Fig. 9). All three 383 simulations underestimate chlorophyll concentration in the tropics compared to observations (Fig. 9). 384 These simulations further support the suggestion by Le Quéré et al. (2016) that the observed 385 distribution of chlorophyll in the north and south is a consequence of trophic balances between the PFTs. 386 PlankTOM11 underestimates primary production by 10 PgC y⁻¹, export production and N₂ fixation are 387 within the observational range, and CaCO₃ export is slightly overestimated (Table 6). 388 In PlankTOM11 each PFT shows unique spatial distribution in carbon biomass (Fig. 5). The total 389 390 biomass of phytoplankton is within the range of observations, but the partitioning of this biomass 391 between phytoplankton types differs from observations (Table 6). PlankTOM11 is dominated by mixed-phytoplankton and coccolithophores, together making up 47% of the total phytoplankton 392 393 biomass. Diatoms and *Phaeocystis* are the next most abundant and fall within the observed range, followed by Picophytoplankton with around half the observed biomass (Table 6). The observations 394 395 are dominated by picophytoplankton, followed by *Phaeocystis* and Diatoms (Table 6). The modelled 396 mixed-phytoplankton is likely taking up the ecosystem niche of picophytoplankton. Coccolithophores

are overestimated by a factor of 10 and may also be filling the ecosystem niche of picophytoplankton in the model (Table 6).

399

3.3 ROLE OF JELLYFISH IN THE PLANKTON ECOSYSTEM

400 401

> 402 Other than jellyfish, macrozooplankton exhibit the largest change in biomass between the three 403 simulations, followed by mesozooplankton (Fig. 10). This is despite the higher preference of jellyfish 404 grazing on mesozooplankton (ratio of 10) than on macrozooplankton (ratio of 5; Table 3), suggesting 405 that the interaction between macrozooplankton and jellyfish is dominated by competition for 406 resources rather than by their mutual predation. Jellyfish and macrozooplankton both preferentially 407 graze on mesozooplankton and protozooplankton. The greatest difference in PFT biomass between 408 simulations occurs in latitudes higher than 30° (Fig. 10). In the tropics, jellyfish have a low impact on 409 the ecosystem due to their low biomass in this region (Fig. 6 and Fig. 10). 410 The seasonality of the PFTs in each simulation is shown in Fig. 11 for 30-70° north and south, as the 411 regions with the greatest differences between simulations (Fig. 10). In PlankTOM10 412 macrozooplankton represent the highest trophic level. The addition of another PFT at the same or at a higher trophic level (PlankTOM10.5 and PlankTOM11 respectively) greatly reduces the biomass of 413 414 the macrozooplankton, through a combination of competition and low-level predation (Fig. 10 and 415 Fig. 11). The addition of jellyfish changes the zooplankton with the highest biomass from macrozooplankton to protozooplankton, in both the north and south (Fig. 11). However, the addition 416 417 of jellyfish has a small impact on the biomass of protozooplankton (Fig. 11), despite the high prey 418 preference of jellyfish for protozooplankton. The small impact of jellyfish on protozooplankton 419 biomass may be due to trophic cascade effects where jellyfish reduce the biomass of 420 macrozooplankton, which reduces the predation pressure of macrozooplankton on protozooplankton, 421 whilst jellyfish provide an additional predation pressure on protozooplankton. The decrease in 422 predation by macrozooplankton may be compensated for by the increase in predation by jellyfish. 423 In PlankTOM11 there is a clear distinction between the biomass in the north and south, with higher 424 biomass for each PFT in the north compared to the south (Fig. 10 and Fig. 11). Plankton types have 425 higher concentrations in the respective hemisphere's summer, and a double peak in phytoplankton in the north (Fig. 10 and Fig. 11). PlankTOM10 also has a higher biomass of each PFT in the north 426 427 compared to the south, but the difference is smaller than that in PlankTOM11 (Fig. 10 and Fig. 11). The key difference between the two models is the biomass of macrozooplankton. In PlankTOM10 428 429 macrozooplankton are the dominant zooplankton, especially in late summer and autumn where their 430 biomass matches and even exceeds the biomass of phytoplankton in the region (Fig. 11). In

© **()**

PlankTOM11 neither macrozooplankton, nor any other zooplankton, come close to matching the biomass of phytoplankton. The largest direct influence of jellyfish in these regions is its control on macrozooplankton biomass.

In PlankTOM11 in the north, phytoplankton display a double peak in seasonal biomass, with a smaller peak in April of 2.4 μmol C L⁻¹, followed by a larger peak in July of 3.2 μmol C L⁻¹ (Fig. 11).

The addition of jellyfish amplifies these peaks from PlankTOM10 and PlankTOM10.5 (Fig. 11) and from PlankTOM10 (Le Quéré et al., 2016).

Model results suggest high competition between macrozooplankton (crustaceans) and jellyfish. The

438

4. **DISCUSSION**

439 440

441

442 growth rate of jellyfish is higher than that of macrozooplankton for the majority of the ocean (where the temperature is less than 25°C) but the mortality of jellyfish is also significantly higher than 443 macrozooplankton, again for the majority of the ocean. In situations where jellyfish mortality is 444 445 reduced (but still higher than macrozooplankton mortality), jellyfish outcompete macrozooplankton for grazing. Because jellyfish also prey directly on macrozooplankton, the biomass of 446 447 macrozooplankton can rapidly decrease in a positive feedback mechanism. This sensitivity of the 448 composition of the zooplankton community to the mortality of jellyfish could help explain why 449 jellyfish are seen as increasing globally. A reduction in jellyfish mortality during early life-stages i.e. through reduced predation on planula larvae and juveniles by fish (Duarte et al., 2013; Lucas et al., 450 451 2012), could quickly allow jellyfish to outcompete other zooplankton, especially macrozooplankton. 452 The high patchiness of jellyfish in the observations is partly but not fully captured in PlankTOM11 (Fig. 7 and Table 7). The reasons for limited patchiness include the model resolution of $\sim 2^{\circ} \times 1^{\circ}$ which 453 454 doesn't allow for the representation of small-scale physical mixing such as eddies and frontal regions, 455 which have been shown to influence bloom formation (Benedetti-Cecchi et al., 2015; Graham et al., 456 2001). Physical processes are likely to be more responsible for jellyfish patchiness than behaviours, 457 due to their simplistic locomotion. For example, many jellyfish blooms occur around fronts, 458 upwelling regions, tidal and estuarine regions, and shelf-breaks where currents can aggregate and 459 retain organisms (Graham et al., 2001). A few large individuals of the species Rhizostoma octopus 460 (barrel jellyfish) have been found to have the capacity to actively swim counter current and orientate 461 themselves with currents to aid bloom formation and retention (Fossette et al., 2015). However, this active swimming behaviour is not representative across the group and would only move the jellyfish 462 463 within an area less than the resolution of the model. Furthermore, there is currently insufficient data 464 and an incomplete understanding of such swimming behaviours to include it in a global model.

465 The maximum biomass of jellyfish in PlankTOM11 is 98.9 μ g C L⁻¹, compared to the observed 466 maximum biomass of 156 μ g C L⁻¹ and the mean:max ratio is within the range of observations 467 although towards the lower end (Table 7). This demonstrates that even without replication of high 468 patchiness, PlankTOM11 still achieved some ephemeral blooms where jellyfish achieved a high 469 biomass. A key limitation of jellyfish representation in the model is the lack of a life cycle. Many jellyfish 470 471 alternate between asexual (budding during the polyp stage) and sexual (broadcast spawning) 472 reproduction (Brotz et al., 2012). Temperature cues have been found to trigger budding of ephyrae, 473 increasing the medusa population (Han and Uye, 2010; Lucas and Dawson, 2014). Data on the polyp 474 stage of jellyfish is largely focussed on common species and almost exclusively lab-based, with the 475 patterns observed being locale- and species-dependant. Modelling of jellyfish life cycles is still 476 relatively new, with the focus of previous modelling studies also being locale- and species-dependant (Henschke et al., 2018; Schnedler-Meyer et al., 2018). Higher temperature within PlankTOM11 477 478 increases the growth rate, which translates into increased biomass if there is sufficient food, thus 479 providing a representation of an increasing medusa population. The inclusion of jellyfish life cycles 480 into PlankTOM11 would be a large undertaking, outside the scope of this study. The aim of this study was not to reproduce small-scale blooms, but rather to assess at the large and global scale the 481 482 influence of jellyfish on the plankton ecosystem and biogeochemistry. 483 There is currently no coastal advantage for jellyfish included in the model, as there is for 484 macrozooplankton, which have a coastal and under-ice advantage for increased recruitment (Le Quéré 485 et al., 2016). Introducing a similar coastal advantage for jellyfish could introduce an element of life 486 cycle benefits i.e. the increased recruitment and settlement of planula larvae onto hard substrate in 487 coastal regions and also ephyrae released from nearshore systems may benefit from being in 488 nearshore waters (restricted there by mobility and current-closure systems) in much the same way as 489 for other neritic planktonic taxa (Lucas et al., 2012). 490 Jellyfish in PlankTOM11 are parameterised using data largely from temperate species, because this is 491 the majority of the data available. This may explain some of the prevalence of jellyfish in 492 PlankTOM11 at mid- to high-latitudes and the lower biomass in the tropics. Experimental rate data for a wider range of jellyfish species from a wider range of latitudes is required to address this bias. 493 Another limitation of jellyfish representation in the model is the lack of body size representation. 494 495 Most biological activity is from small individuals, while most of the biomass is from large 496 individuals. The size distribution of body mass in jellyfish is particularly wide compared to other 497 PFTs (Table 1), so representing jellyfish activity by an average sized individual could well skew the 498 results.

https://doi.org/10.5194/bg-2020-136 Preprint. Discussion started: 30 April 2020 © Author(s) 2020. CC BY 4.0 License.

Trophic interactions explain the improvement of spatial chlorophyll with the introduction of jellyfish to the model (PlankTOM10 to PlankTOM10.5 to PlankTOM11), especially the North/South ratio. The three simulations have identical physical environments, with the influence of jellyfish as the only alteration, so any differences between the three can be attributed to the ecosystem structure. Jellyfish are the highest trophic level represented in PlankTOM11, with preference for meso-, followed by proto-, and then macrozooplankton. However, the largest influence of jellyfish is on the macrozooplankton, because the grazing pressure on mesozooplankton from macrozooplankton is reduced, and the grazing on protozooplankton by macro- and mesozooplankton is reduced, while the grazing pressure from jellyfish on both meso- and protozooplankton is increased. The combined changes to macrozooplankton and jellyfish grazing pressure counteract to reduce the overall change in grazing pressure. The top down trophic cascade from jellyfish on the other zooplankton also changes some of the grazing pressures on the phytoplankton, which translates into regional and seasonal effects on chlorophyll.

3.5 CONCLUSION

Jellyfish have been included as a PFT in a global ocean biogeochemical model for the first time as far as we can tell at the time of writing. The PlankTOM11 model provides reasonable overall replication of global ecosystem properties and improved surface chlorophyll, particularly the north/south ratio. The replication of global mean jellyfish biomass, 0.13 PgC, is within the observational range, and in the region with the highest density of observations PlankTOM11 closely replicates the mean and seasonal jellyfish biomass. There is a deficit of data on jellyfish carbon biomass observations and physiological rates. Monitoring and data collection efforts have increased over recent years; we recommend a further increase especially focussing in less-surveyed regions and on non-temperate species.

Jellyfish exert control over the other zooplankton, with the greatest influence on macrozooplankton. Through trophic cascades jellyfish also influence the phytoplankton. PlankTOM11 is a successful first step in the inclusion of jellyfish in global ocean biogeochemical modelling. The model raises interesting questions about the sensitivity of the zooplankton community to changes in jellyfish mortality and calls for an investigation in interactions between macrozooplankton and jellyfish. Future model development could include an exploration of the life cycle, coastal advantages, and

higher resolution ocean physical processes to enhance patchiness.

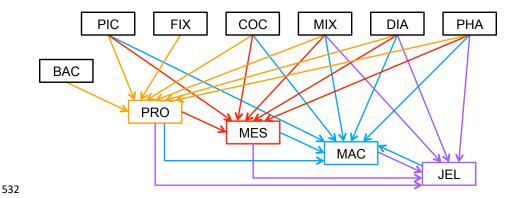


Table 1. Size range and descriptions of PFT groups used in PlankTOM11. Adapted from Le Quéré et al. (2016).

Name	Abbreviation	Size Range μ m	Description/Includes
Autotrophs			
Pico-phytoplankton	PIC	0.5 – 2	Pico-eukaryotes and non N ₂ -fixing cyanobacteria such as Synechococcus and Prochlorococcus
N ₂ -fixers	FIX	0.7 – 2	Trichodesmium and N ₂ -fixing unicellular cyanobacteria
Coccolithophores	COC	5 – 10	
Mixed-phytoplankton	MIX	2 – 200	e.g. autotrophic dinoflagellates and chrysophytes
Diatoms	DIA	20 – 200	
Phaeocystis	РНА	120 – 360	Colonial Phaeocystis
Heterotrophs			
Bacteria	BAC	0.3 – 1	Here used to subsume both heterotrophic Bacteria and Archaea
Protozooplankton	PRO	5 – 200	e.g. heterotrophic flagellates and ciliates
Mesozooplankton	MES	200 – 2000	Predominantly copepods
Macrozooplankton	MAC	>2000	Euphausiids, amphipods, and others, called 'macrozooplankton'
Jellyfish zooplankton	JEL	200 -> 20,000	Cnidaria medusa, 'true jellyfish'

Figure 1. Schematic representation of the PlankTOM11 marine ecosystem model (see Table 1 for PFT definitions). The arrows represent the grazing fluxes by protozooplankton (orange), mesozooplankton (red), macrozooplankton (blue) and jellyfish zooplankton (purple). Only fluxes with relative preferences above 0.1 are shown (see Table 3).

536537

533 534

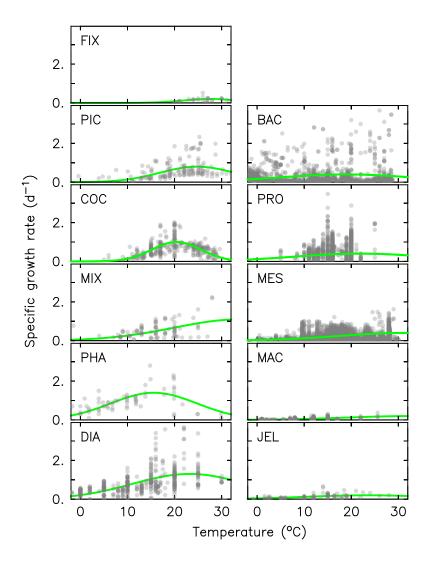


Table 2. Parameters used to calculate PFT specific growth rate with three-parameter fit (Eq. 3) in PlankTOM11.

PFT	μ _{max} (d ⁻¹)	Topt (°C)	dT (°C)
FIX	0.2	27.6	8.2
PIC	0.8	24.8	11.2
COC	1.0	20.4	7.4
MIX	1.1	34.0	20.0
РНА	1.4	15.6	13.0
DIA	1.3	23.2	17.2
BAC	0.4	18.8	20.0
PRO	0.4	22.0	20.0
MES	0.4	31.6	20.0
MAC	0.2	33.2	20.0
JEL	0.2	23.6	18.8

Figure 2. Maximum growth rates for the 11 PFTs as a function of temperature from observations (grey circles). The three-parameter fit to the data is shown in green, using the parameter values from Table 2. For full PFT names see Table 1.

541

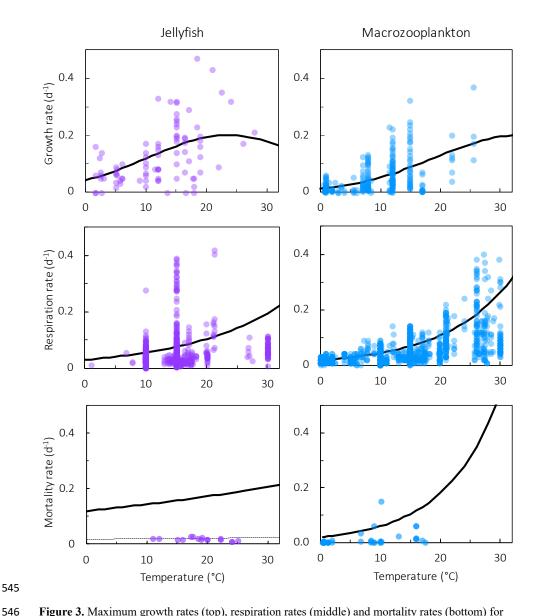


Table 3. Relative preference, expressed as a ratio, of zooplankton for food (grazing) used in PlankTOM11. For each zooplankton the preference ratio for diatoms is set to 1.

PFT	PRO	MES	MAC	JEL
Autotrophs				
FIX	2	0.1	0.1	0.1
PIC	3	0.75	0.5	0.1
COC	2	0.75	1	0.1
MIX	2	0.75	1	1
DIA	1	1	1	1
РНА	2	1	1	1
Heterotrophs				
BAC	4	0.1	0.1	0.1
PRO	0	2	1	7.5
MES	0	0	2	10
MAC	0	0	0	5
JEL	0	0	0.5	0
Particulate matter				
Small organic particles	0.1	0.1	0.1	0.1
Large organic particles	0.1	0.1	0.1	0.1

Figure 3. Maximum growth rates (top), respiration rates (middle) and mortality rates (bottom) for jellyfish (left; purple) and macrozooplankton (right; blue) PFTs as a function of temperature. The fit to the data is shown in black, using the parameter values from Table 2 and Table 4. Growth rates are the same as shown in Fig. 2, on a different scale. For jellyfish mortality the thin dashed line is the fit to data and the solid line is the adjusted fit (Table 4).

547

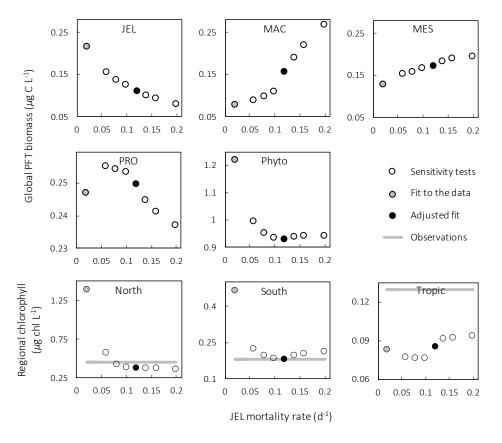


Table 4. Temperature dependent rates of respiration and mortality for macro- and jellyfish zooplankton. Where μ_0 is the rate at 0°C and Q_{10} is the temperature coefficient (Eq. 2).

Parameters	JEL		MAC	
	μ ₀ (d ⁻¹)	Q10	μ ₀ (d ⁻¹)	Q10
Respiration	0.03	1.88	0.01	2.46
Mortality	0.12	1.20	0.02	3.00

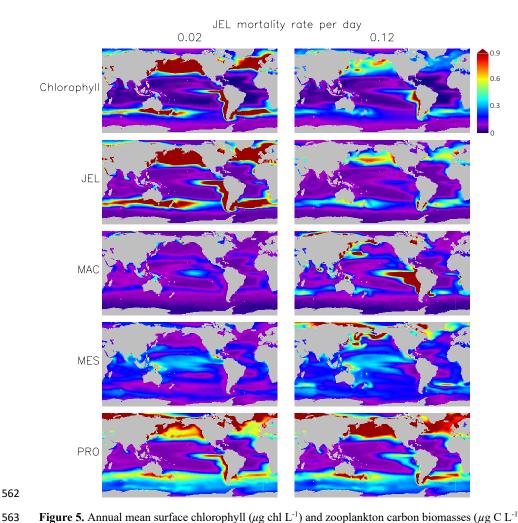

552

Figure 4. Results from sensitivity tests on jellyfish mortality rates. The adjusted fit simulation used for PlankTOM11 is shown by the black filled circle and the fit to the data simulation is shown by the grey filled circle; global mean PFT biomass (μ g C L⁻¹) for 0-200m depth (top - middle), regional mean surface chlorophyll concentration (μ g chl L⁻¹; bottom). For the regional mean chlorophyll the observations are calculated from SeaWiFS. All data are averaged for 1985-2015, and between 30° and 55° latitude in both hemispheres: 140-240°E in the north and 140-290°E in the south (see Fig. 8). Phyto is the sum of all the phytoplankton PFTs.

Figure 5. Annual mean surface chlorophyll (μ g chl L⁻¹) and zooplankton carbon biomasses (μ g C L⁻¹) of JEL, MAC, MES and PRO for adjustment of JEL mortality for the simulation with 0.02 mortality/d⁻¹ (left) and the adjusted fit simulation with 0.12 mortality/d⁻¹ (right) used in PlankTOM11. Results are shown for the surface box (0-10 meters) and averaged for 1985-2015.

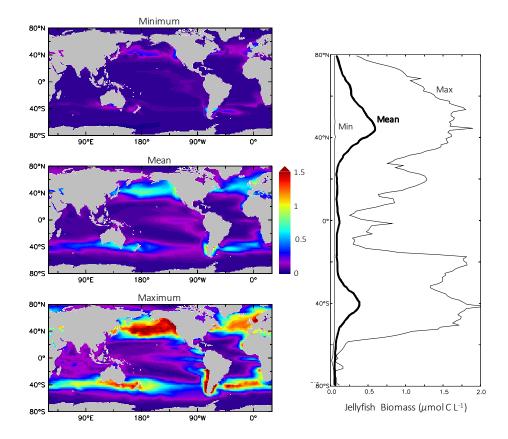

564

Table 5. Changes to non-jellyfish PFT parameters. PlankTOM10 (2016) is the latest published version of PlankTOM with 10 PFTs (Le Quéré et al., 2016).

Parameters	PlankTOM10 (2016)	PlankTOM11	PlankTOM10 (this study)
MAC mortality	0.020	0.005	0.012
MES respiration	0.014	0.001	0.014

Figure 6. Annual surface carbon biomasses (μmol C L⁻¹) for the jellyfish PFT in PlankTOM11. Results are the mapped monthly minimum (top left), mean (middle left) and maximum (bottom left) from monthly climatologies, and averaged over longitude (right) for the minimum, mean and maximum. All data is for 1985-2015.

Table 6. Global mean values for rates and biomass from observations and the PlankTOM11 and PlankTOM10 models averaged over 1985–2015. In parenthesis is the percentage share of the plankton type of the total phytoplankton or zooplankton biomass. References for observations are given in the appendix. Adapted from Le Quéré et al. (2016).

	PlankTOM11	PlankTOM10	Observations
Rates			
Primary production (PgC y ⁻¹)	41.6	43.4	51-65
Export production at 100m (PgC y ⁻¹)	7.1	7.0	5-13
CaCO ₃ export at 100m (PgC y ⁻¹)	1.3	1.2	0.6-1.1
N ₂ fixation (TgN y ⁻¹)	97.2	95.9	60-200
Phytoplankton biomass 0-200 m (PgC)			
N ₂ -fixers	0.065 (6.1%)	0.075 (7.2%)	0.008-0.12 (2-8%)
Picophytoplankton	0.141 (13%)	0.153 (15%)	0.28-0.52 (35-68%)
Coccolithophores	0.248 (23%)	0.212 (20%)	0.001-0.032 (0.2-2%)
Mixed-phytoplankton	0.263 (24%)	0.268 (26%)	-
Phaeocystis	0.177 (16%)	0.170 (16%)	0.11-0.69 (27-46%)
Diatoms	0.183 (17%)	0.167 (16%)	0.013-0.75 (3-50%)
Total phytoplankton biomass	1.077	1.046	0.412 - 2.112
Heterotrophs biomass 0-200 m (PgC)			
Bacteria	0.041	0.046	0.25-0.26
Protozooplankton	0.295 (36%)	0.330 (32.7%)	0.10-0.37 (27-31%)
Mesozooplankton	0.193 (23%)	0.218 (21.6%)	0.21-0.34 (25-66%)
Macrozooplankton	0.205 (25%)	0.460 (45.6%)	0.01-0.64 (3-47%)
Jellyfish zooplankton	0.129 (16%)	-	0.10-3.11
Total zooplankton biomass	0.823	1.008	0.42 - 4.46

Table 7. Jellyfish biomass globally from observations (MAREDAT) and PlankTOM11. Three types of mean are given for the observations; Med is the median, AM is the arithmetic mean and GM is the geometric mean. The ratios are all scaled to mean = 1. All units are μ g C L⁻¹.

		Mean	Max	Ratio
Observations	AM	3.61	156.0	1:43
	GM	0.95	156.0	1:165
	Med	0.29	156.0	1:538
PlankTOM11	AM	1.18	98.9	1:84

577

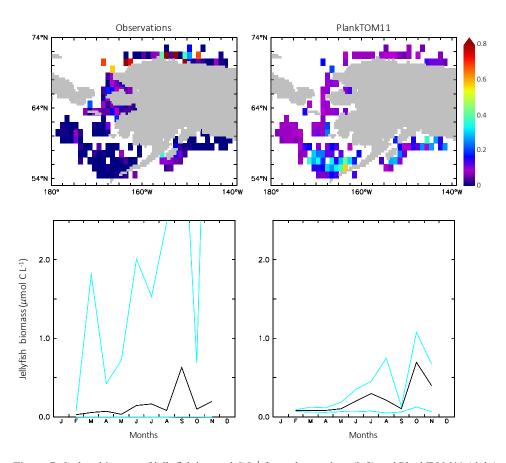
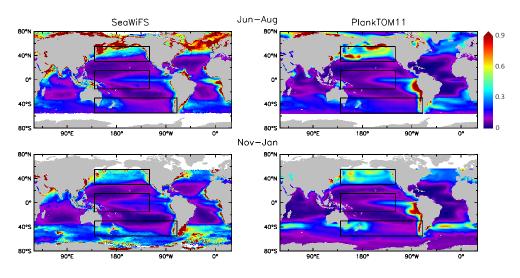


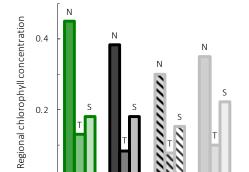
Figure 7. Carbon biomass of jellyfish in μ mol C L⁻¹ from observations (left) and PlankTOM11 (right) for the coast of Alaska (the region with the highest density of observations). The top panels show the mean jellyfish biomass and the bottoms panels show the seasonal jellyfish biomass, with the monthly mean in black and the monthly minimum and maximum in blue. Observations and PlankTOM11 results are for 0-150m, as the depth range where >90% of the observations occur. No observations were available for January or December.

587

588 589

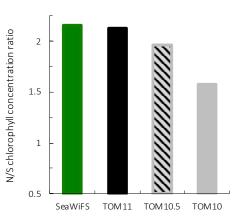

590

591592593594


595

596 597

598 599


Figure 8. Surface chlorophyll (μ g chl L⁻¹) averaged for June to August (top) and November to January (bottom). Panels show observations from SeaWiFS (left) satellite and results from PlankTOM11 (right). Observations and model are averaged for 1997-2006. The black boxes show the North, Tropic and South regions used in Fig. 4 and Fig. 9.

TOM11

TOM 10.5

SeaWiFS

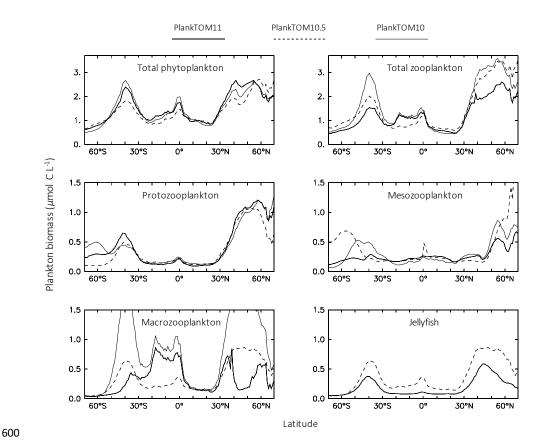


Figure 9. Surface chlorophyll for observations from SeaWiFS satellite, PlankTOM11, PlankTOM10.5 and PlankTOM10. Regional chlorophyll concentration in μ g chl L⁻¹ (right) for the north (N), tropic (T) and south (S) regions shown in Fig. 8 and the N/S chlorophyll concentration ratio (left). Observations and model are averaged for 1997-2006.

TOM 10

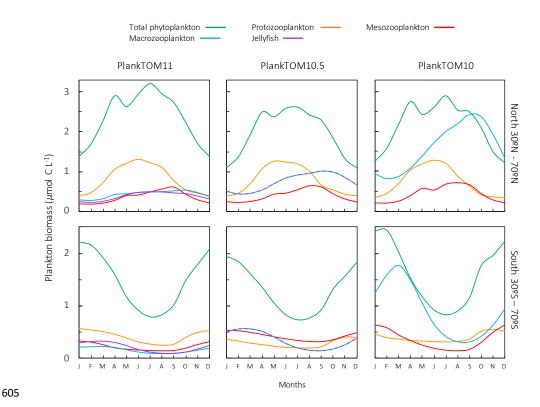


Figure 10. Zonal mean distribution of surface plankton biomass for the PlankTOM11, PlankTOM10.5 and PlankTOM10 simulations. All data are averaged for 1985-2015 for the surface box (0-10m).

Figure 11. Seasonal surface carbon biomass (μ mol C L⁻¹) of total phytoplankton PFTs, protozooplankton, mesozooplankton, macrozooplankton and jellyfish. Panels shown PFT biomass for PlankTOM11 (left), PlankTOM10.5 (middle) and PlankTOM10 (right), for two regions; the north 30°N - 70°N (top) and the south 30°S - 70°S (bottom) across all longitudes. All data are averaged for 1985-2015 for the surface box (0-10m).

612 Appendix

613

Table A1. Global mean values for rates and biomass from observations with the associated references. In parenthesis is the percentage share of the plankton type of the total Phytoplankton or Zooplankton biomass.

	Observations	Reference for the data	
Rates			
Primary production (PgC y ⁻¹)	51-65	Buitenhuis et al. (2013b)	
Export production at 100m (PgC y ⁻¹)	5-13	Henson et al. (2011), Palevsky et al. (2018)	
CaCO ₃ export at 100m (PgC y ⁻¹)	0.6-1.1	Lee (2001), Sarmiento et al. (2002)	
N ₂ fixation (TgN y ⁻¹)	60-200	Gruber (2008)	
Phytoplankton biomass 0-200 m (Pg	C)		
N ₂ -fixers	0.008-0.12 (2-8%)	Luo et al. (2012)	
Picophytoplankton	0.28-0.52 (35-68%)	Buitenhuis et al. (2012b)	
Coccolithophores	0.001-0.032 (0.2-2%)	O'Brien et al. (2013)	
Mixed-phytoplankton	-	-	
Phaeocystis	0.11-0.69 (27-46%)	Vogt et al. (2012)	
Diatoms	0.013-0.75 (3-50%)	Leblanc et al. (2012)	
Heterotrophs biomass 0-200 m (PgC)		
Bacteria	0.25-0.26	Buitenhuis et al. (2012a)	
Protozooplankton	0.10-0.37 (27-31%)	Buitenhuis et al. (2010)	
Mesozooplankton	0.21-0.34 (25-66%)	Moriarty and O'Brien (2013)	
Macrozooplankton	0.01-0.64 (3-47%)	Moriarty et al. (2013)	
Jellyfish zooplankton	0.10-3.11	Bar-On et al. (2018), Lucas et al. (2014), Buitenhuis et al. (2013b)	

614

616	Author Contribution
617	RMW, CLQ, ETB and SP conceptualized the research goals and aims. RMW carried out the formal
618	analysis with contributions from CLQ and ETB. RW developed the model code with significant
619	contributions from ETB, and RMW performed the simulations. RMW prepared the manuscript with
620	contributions from all co-authors.
621	The authors declare that they have no conflict of interest.
622	
623	Acknowledgements
624	RMW was funded by Doctoral Training Programme ARIES, funded by the UK Natural Environment
625	Research Council (project no. NE/L002582/1). CLQ was funded by the Royal Society (grant no.
626	$RP\ \ R1\ \ 191063). \ ETB \ was funded by the European Commission \ H2020 \ project \ CRESCENDO \ (grant \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
627	no. 641816). This research was partly conducted in South Africa with the support of the Newton
628	$International\ PhD\ exchange\ programme\ (grant\ no.\ ES/N013948/1).\ The\ model\ simulations\ were\ done and the programme is a simulation of the programme $
629	on the UEA's High Performance Computing Cluster.
630	

631 REFERENCES

- 632 Acevedo, M. J., Fuentes, V. L., Olariaga, A., Canepa, A., Belmar, M. B., Bordehore, C. and Calbet,
- 633 A.: Maintenance, feeding and growth of Carybdea marsupialis (Cnidaria: Cubozoa) in the laboratory,
- 634 J. Exp. Mar. Bio. Ecol., 439, 84–91, doi:https://doi.org/10.1016/j.jembe.2012.10.007, 2013.
- 635 Acuña, J. L., López-Urrutia, Á. and Colin, S.: Faking giants: the evolution of high prey clearance
- 636 rates in jellyfishes, Science (80-.)., 333(6049), 1627–1629, doi:10.1126/science.1205134, 2011.
- 637 Almeda, R., Wambaugh, Z., Chai, C., Wang, Z., Liu, Z. and Buskey, E. J.: Effects of crude oil
- 638 exposure on bioaccumulation of polycyclic aromatic hydrocarbons and survival of adult and larval
- stages of gelatinous zooplankton, PLoS One, 8(10), e74476, 2013.
- 640 Antonov, J. I., Seidov, D., Boyer, T., Locarnini, R., Mishonov, A., Garcia, H., Baranova, O., Zweng,
- M. and Johnson, D.: World Ocean Atlas 2009, , 2: Salinit, 2010.
- 642 Bar-On, Y. M., Phillips, R. and Milo, R.: The biomass distribution on Earth, Proc. Natl. Acad. Sci. U.
- 643 S. A., 115(25), 6506–6511, doi:10.1073/pnas.1711842115, 2018.
- 644 Benedetti-Cecchi, L., Canepa, A., Fuentes, V., Tamburello, L., Purcell, J. E., Piraino, S., Roberts, J.,
- 645 Boero, F. and Halpin, P.: Deterministic Factors Overwhelm Stochastic Environmental Fluctuations as
- Drivers of Jellyfish Outbreaks, PLoS One, 10(10), e0141060, 2015.
- 647 Boero, F., Bucci, C., Colucci, A. M. R., Gravili, C. and Stabili, L.: Obelia (Cnidaria, Hydrozoa,
- 648 Campanulariidae): A microphagous, filter-feeding medusa, Mar. Ecol., 28(SUPPL. 1), 178–183,
- 649 doi:10.1111/j.1439-0485.2007.00164.x, 2007.
- 650 Boero, F., Bouillon, J., Gravili, C., Miglietta, M. P., Parsons, T. and Piraino, S.: Gelatinous plankton:
- irregularities rule the world (sometimes), Mar. Ecol. Prog. Ser., 356, 299–310,
- doi:10.3354/meps07368, 2008.
- 653 Boero, F., Brotz, L., Gibbons, M. J., Piranio, S. and Zampardi, S.: Impacts and effects of ocean
- 654 warming on jellyfish, in Explaining Ocean Warming: Causes, scale, effects and consequences, pp.
- 655 213–237, IUCN, Gland, Switzerland., 2016.
- 656 Brotz, L., Cheung, W. W. L., Kleisner, K., Pakhomov, E. and Pauly, D.: Increasing jellyfish
- 657 populations: trends in Large Marine Ecosystems, Hydrobiologia, 690(1), 3-20, doi:10.1007/s10750-
- 658 012-1039-7, 2012.
- 659 Buitenhuis, E. T., Le Quéré, C., Aumont, O., Beaugrand, G., Bunker, A., Hirst, A., Ikeda, T.,
- 660 O'Brien, T., Piontkovski, S. and Straile, D.: Biogeochemical fluxes through mesozooplankton, Global
- 661 Biogeochem. Cycles, 20(2), 2006.

- Buitenhuis, E. T., Rivkin, R. B., Sailley, S. and Quéré, C. Le: Biogeochemical fluxes through
- 663 microzooplankton, Global Biogeochem. Cycles, 24(4), doi:10.1029/2009GB003601, 2010.
- 664 Buitenhuis, E. T., Li, W. K. W., Lomas, M. W., Karl, D. M., Landry, M. R. and Jacquet, S.:
- 665 Picoheterotroph (Bacteria and Archaea) biomass distribution in the global ocean, Earth Syst. Sci.
- Data, 4(1), 101–106, doi:10.5194/essd-4-101-2012, 2012a.
- 667 Buitenhuis, E. T., Li, W. K. W., Vaulot, D., Lomas, M. W., Landry, M. R., Partensky, F., Karl, D. M.,
- 668 Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., MacIas, D., Gosselin, M. and
- 669 McManus, G. B.: Picophytoplankton biomass distribution in the global ocean, Earth Syst. Sci. Data,
- 670 4(1), 37–46, doi:10.5194/essd-4-37-2012, 2012b.
- 671 Buitenhuis, E. T., Hashioka, T. and Le Quéré, C.: Combined constraints on global ocean primary
- 672 production using observations and models, Global Biogeochem. Cycles, 27(3), 847–858,
- 673 doi:10.1002/gbc.20074, 2013a.
- 674 Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednarsek, N., Doney, S. C., Leblanc, K., Le Quere, C.,
- 675 Luo, Y. W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R. and Swan, C.: MAREDAT: towards a
- 676 world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data, 5(2), 227-239, doi:10.5194/essd-5-
- 677 227-2013, 2013b.
- 678 Chelsky, A., Pitt, K. A. and Welsh, D. T.: Biogeochemical implications of decomposing jellyfish
- 679 blooms in a changing climate, Estuar. Coast. Shelf Sci., 154, 77–83, doi:10.1016/j.ecss.2014.12.022,
- 680 2015.
- 681 Colin, S. P., Costello, J. H., Graham, W. M. and Higgins III, J.: Omnivory by the small cosmopolitan
- 682 hydromedusa Aglaura hemistoma, Limnol. Oceanogr., 50(4), 1264–1268, 2005.
- 683 Condon, R. H., Graham, W. M., Duarte, C. M., Pitt, K. A., Lucas, C. H., Haddock, S. H. D.,
- 684 Sutherland, K. R., Robinson, K. L., Dawson, M. N., Beth, M., Decker, M. B., Mills, C. E., Purcell, J.
- 685 E., Malej, A., Mianzan, H., Uye, S.-I., Gelcich, S. and Madin, L. P.: Questioning the Rise of
- 686 Gelatinous Zooplankton in the World's Oceans, Bioscience, 62(2), 160–169,
- 687 doi:10.1525/bio.2012.62.2.9, 2012.
- 688 Condon, R. H., Duarte, C. M., Pitt, K. A., Robinson, K. L., Lucas, C. H., Sutherland, K. R., Mianzan,
- 689 H. W., Bogeberg, M., Purcell, J. E., Decker, M. B., Uye, S., Madin, L. P., Brodeur, R. D., Haddock,
- 690 S. H. D., Malej, A., Parry, G. D., Eriksen, E., Quiñones, J., Acha, M., Harvey, M., Arthur, J. M. and
- 691 Graham, W. M.: Recurrent jellyfish blooms are a consequence of global oscillations., Proc. Natl.
- 692 Acad. Sci. U. S. A., 110(3), 1000–5, doi:10.1073/pnas.1210920110, 2013.
- 693 Crum, K. P., Fuchs, H. L., Bologna, P. A. X. and Gaynor, J. J.: Model-to-data comparisons reveal

- 694 influence of jellyfish interactions on plankton community dynamics, Mar. Ecol. Prog. Ser., 517, 105-
- 695 119, doi:10.3354/meps11022, 2014.
- 696 Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., Galindo, H. M.,
- 697 Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J. and
- 698 Talley, L. D.: Climate Change Impacts on Marine Ecosystems, Annu. Rev. Mar. Sci. Vol 4, 4, 11–37,
- 699 doi:10.1146/annurev-marine-041911-111611, 2012.
- 700 Duarte, C. M., Pitt, K. A. and Lucas, C. H.: Understanding Jellyfish Blooms, in Jellyfish Blooms,
- 701 edited by C. M. Pitt, Kylie A, Lucas, pp. 1–5, Springer, London. [online] Available from:
- 702 http://www.springer.com/life+sciences/ecology/book/978-94-007-7014-0, 2013.
- 703 Flynn, B. A. and Gibbons, M. J.: A note on the diet and feeding of Chrysaora hysoscella in Walvis
- Bay Lagoon, Namibia, during September 2003, African J. Mar. Sci., 29(2), 303–307,
- 705 doi:10.2989/AJMS.2007.29.2.15.197, 2007.
- 706 Fossette, S., Gleiss, A. C., Chalumeau, J., Bastian, T., Armstrong, C. D., Vandenabeele, S.,
- 707 Karpytchev, M. and Hays, G. C.: Current-Oriented Swimming by Jellyfish and Its Role in Bloom
- 708 Maintenance, Curr. Biol., 25(3), 342–347, doi:10.1016/j.cub.2014.11.050, 2015.
- 709 Gibbons, M. J. and Richardson, A. J.: Beyond the jellyfish joyride and global oscillations: advancing
- 710 jellyfish research, J. Plankton Res., 35(5), 929–938, doi:10.1093/plankt/fbt063, 2013.
- 711 Graham, W. M., Pagès, F. and Hamner, W.: A physical context for gelatinous zooplankton
- 712 aggregations: a review, Hydrobiologia, 451(1–3), 199–212, doi:10.1023/A:1011876004427, 2001.
- 713 Gruber, N.: The Marine Nitrogen Cycle: Overview and Challenges, Nitrogen Mar. Environ., 1-50,
- 714 doi:10.1016/B978-0-12-372522-6.00001-3, 2008.
- 715 Hamner, W. M. and Dawson, M. N.: A review and synthesis on the systematics and evolution of
- 716 jellyfish blooms: advantageous aggregations and adaptive assemblages, Hydrobiologia, 616, 161–191,
- 717 doi:10.1007/s10750-008-9620-9, 2009.
- 718 Han, C.-H. and Uye, S.: Combined effects of food supply and temperature on asexual reproduction
- 719 and somatic growth of polyps of the common jellyfish Aurelia aurita sl, Plankt. Benthos Res., 5(3),
- 720 98–105, 2010.
- 721 Henschke, N., Stock, C. A. and Sarmiento, J. L.: Modeling population dynamics of scyphozoan
- 722 jellyfish (Aurelia spp.) in the Gulf of Mexico, Mar. Ecol. Prog. Ser., 591, 167–183,
- 723 doi:10.3354/meps12255, 2018.
- 724 Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F. and Quartly, G. D.: A reduced

- estimate of the strength of the ocean's biological carbon pump, Geophys. Res. Lett., 38(4), 10–14,
- 726 doi:10.1029/2011GL046735, 2011.
- 727 Hirst, A. G. and Kiørboe, T.: Mortality of marine planktonic copepods: global rates and patterns, Mar.
- 728 Ecol. Prog. Ser., 230, 195–209, 2002.
- 729 Ikeda, T.: Metabolic rates of epipelagic marine zooplankton as a function of body mass and
- 730 temperature, Mar. Biol., 85(1), 1–11, 1985.
- 731 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S.,
- 732 White, G. and Woollen, J.: The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc.,
- 733 77(3), 437–472, 1996.
- 734 Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero,
- 735 F. J., Mordy, C. and Peng, T.: A global ocean carbon climatology: Results from Global Data Analysis
- 736 Project (GLODAP), Global Biogeochem. Cycles, 18(4), 2004.
- 737 Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G. and Taylor, M. I.: Jellyfish on the
- 738 menu: mtDNA assay reveals scyphozoan predation in the Irish Sea, R. Soc. Open Sci., 4(11),
- 739 doi:10.1098/rsos.171421, 2017.
- 740 Leblanc, K., Arístegui, J., Armand, L., Assmy, P., Beker, B., Bode, A., Breton, E., Cornet, V.,
- 741 Gibson, J., Gosselin, M. P., Kopczynska, E., Marshall, H., Peloquin, J., Piontkovski, S., Poulton, A.
- 742 J., Quéguiner, B., Schiebel, R., Shipe, R., Stefels, J., Van Leeuwe, M. A., Varela, M., Widdicombe,
- 743 C. and Yallop, M.: A global diatom database- A bundance, biovolume and biomass in the world
- 744 ocean, Earth Syst. Sci. Data, 4(1), 149–165, doi:10.5194/essd-4-149-2012, 2012.
- 745 Lebrato, M., Pitt, K. A., Sweetman, A. K., Jones, D. O. B., Cartes, J. E., Oschlies, A., Condon, R. H.,
- 746 Molinero, J. C., Adler, L., Gaillard, C., Lloris, D. and Billett, D. S. M.: Jelly-falls historic and recent
- 747 observations: a review to drive future research directions, Hydrobiologia, 690(1), 227–245,
- 748 doi:10.1007/s10750-012-1046-8, 2012.
- 749 Lebrato, M., Mendes, P. de J., Steinberg, D. K., Cartes, J. E., Jones, B. M., Birsa, L. M., Benavides,
- 750 R. and Oschlies, A.: Jelly biomass sinking speed reveals a fast carbon export mechanism, Limnol.
- 751 Oceanogr., 58(3), 1113–1122, 2013a.
- 752 Lebrato, M., Molinero, J.-C., Cartes, J. E., Lloris, D., Mélin, F. and Beni-Casadella, L.: Sinking jelly-
- 753 carbon unveils potential environmental variability along a continental margin, PLoS One, 8(12),
- 754 e82070, 2013b.
- 755 Lee, K.: Global net community production estimated from the annual cycle of surface water total

- 756 dissolved inorganic carbon, Limnol. Oceanogr., 46(6), 1287–1297, doi:10.4319/lo.2001.46.6.1287,
- 757 2001.
- 758 Lucas, C. H. and Dawson, M. N.: What Are Jellyfishes and Thaliaceans and Why Do They Bloom?,
- in Jellyfish blooms, pp. 9–44, Springer., 2014.
- 760 Lucas, C. H., Graham, W. M. and Widmer, C.: Jellyfish Life Histories: role of polyps in forming and
- 761 maintaining scyphomedusa populations, Adv. Mar. Biol. Vol 63, 63, 133–196, doi:10.1016/b978-0-
- 762 12-394282-1.00003-x, 2012.
- 763 Lucas, C. H., Jones, D. O. B., Hollyhead, C. J., Condon, R. H., Duarte, C. M., Graham, W. M.,
- 764 Robinson, K. L., Pitt, K. A., Schildhauer, M. and Regetz, J.: Gelatinous zooplankton biomass in the
- 765 global oceans: geographic variation and environmental drivers, Glob. Ecol. Biogeogr., 23(7), 701–
- 766 714, doi:10.1111/geb.12169, 2014.
- 767 Luo, Y. W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S.,
- 768 Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E.,
- 769 Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl,
- 770 D. M., Kitajima, S., Langlois, R. J., Laroche, J., Letelier, R. M., Maranon, E., McGillicuddy, D. J.,
- 771 Moisander, P. H., Moore, C. M., Mourino-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt,
- 772 K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam,
- 773 A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J. and
- 774 Zehr, J. P.: Database of diazotrophs in global ocean: Abundance, biomass and nitrogen fixation rates,
- 775 Earth Syst. Sci. Data, 4(1), 47–73, doi:10.5194/essd-4-47-2012, 2012.
- 776 Madec, G.: NEMO ocean engine, Note du Pole modélisation Inst. Pierre-Simon Laplace, 27 [online]
- 777 Available from: https://doi.org/10.5281/zenodo.1464817, 2013.
- 778 Malej, A. and Malej, M.: Population dynamics of the jellyfish Pelagia noctiluca (Forsskål, 1775), in
- 779 Marine Eutrophication and Populations Dynamics, edited by G. Colombo Ferrara, I., pp. 215–219,
- 780 Denmark., 1992.
- 781 Malej, A., Turk, V., Lučić, D. and Benović, A.: Direct and indirect trophic interactions of Aurelia
- 782 sp.(Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea), Mar. Biol., 151(3),
- 783 827–841, 2007.
- 784 Mills, C. E.: Natural mortality in NR Pacific coastal hydromedusae grazing predation, wound-
- 785 healing and senescence, Bull. Mar. Sci., 53(1), 194–203, 1993.
- 786 Moriarty, R.: The role of macro-zooplankton in the global carbon cycle, Ph.D. Thesis, School of
- 787 Environmental Sciences, University of East Anglia, England., 2009.

- 788 Moriarty, R. and O'Brien, T. D.: Distribution of mesozooplankton biomass in the global ocean, Earth
- 789 Syst. Sci. Data, 5(1), 45–55, doi:10.5194/essd-5-45-2013, 2013.
- 790 Moriarty, R., Buitenhuis, E. T., Le Quéré, C. and Gosselin, M. P.: Distribution of known
- 791 macrozooplankton abundance and biomass in the global ocean, Earth Syst. Sci. Data, 5(2), 241–257,
- 792 doi:10.5194/essd-5-241-2013, 2013.
- 793 O'Brien, C. J., Peloquin, J. A., Vogt, M., Heinle, M., Gruber, N., Ajani, P., Andruleit, H., Arístegui,
- 794 J., Beaufort, L., Estrada, M., Karentz, D., Kopczyńska, E., Lee, R., Poulton, A. J., Pritchard, T. and
- 795 Widdicombe, C.: Global marine plankton functional type biomass distributions: Coccolithophores,
- 796 Earth Syst. Sci. Data, 5(2), 259–276, doi:10.5194/essd-5-259-2013, 2013.
- 797 Palevsky, H. I. and Doney, S. C.: How choice of depth horizon influences the estimated spatial
- 798 patterns and global magnitude of ocean carbon export flux, Geophys. Res. Lett., 45(9), 4171–4179,
- 799 2018.
- 800 Pitt, K. A., Kingsford, M. J., Rissik, D. and Koop, K.: Jellyfish modify the response of planktonic
- assemblages to nutrient pulses, Mar. Ecol. Prog. Ser., 351, 1–13, doi:10.3354/meps07298, 2007.
- 802 Pitt, K. A., Welsh, D. T. and Condon, R. H.: Influence of jellyfish blooms on carbon, nitrogen and
- phosphorus cycling and plankton production, Hydrobiologia, 616(1), 133–149, 2009.
- 804 Pitt, K. A., Budarf, A. C., Browne, J. G., Condon, R. H., Browne, D. G. and Condon, R. H.: Bloom
- and Bust: Why Do Blooms of Jellyfish Collapse?, in Jellyfish Blooms, edited by C. M. Pitt, Kylie A,
- 806 Lucas, pp. 79–103, Springer, London. [online] Available from:
- http://www.springer.com/life+sciences/ecology/book/978-94-007-7014-0, 2014.
- 808 Pitt, K. A., Lucas, C. H., Condon, R. H., Duarte, C. M. and Stewart-Koster, B.: Claims that
- anthropogenic stressors facilitate jellyfish blooms have been amplified beyond the available evidence:
- a systematic review, Front. Mar. Sci., 5, 451, 2018.
- 811 Purcell, J. E.: Effects of predation by the Scyphomedusan Chrysaora-quinquecirrha on zooplankton
- populations in Chesapeake Bay, USA, Mar. Ecol. Prog. Ser., 87(1–2), 65–76,
- 813 doi:10.3354/meps087065, 1992.
- Purcell, J. E.: Pelagic cnidarians and ctenophores as predators: Selective predation, feeding rates, and
- effects on prey populations, Ann. L Inst. Oceanogr., 73(2), 125–137, 1997.
- 816 Purcell, J. E.: Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and
- 817 Aequorea aequorea, in Prince William Sound, Alaska, Mar. Ecol. Prog. Ser., 246, 137–152,
- 818 doi:10.3354/meps246137, 2003.

- Purcell, J. E.: Extension of methods for jellyfish and ctenophore trophic ecology to large-scale
- 820 research, in Jellyfish Blooms: Causes, Consequences, and Recent Advances SE 3, vol. 206, edited
- by K. Pitt and J. Purcell, pp. 23–50, Springer Netherlands., 2009.
- 822 Purcell, J. E., Uye, S. and Lo, W.-T.: Anthropogenic causes of jellyfish blooms and their direct
- 823 consequences for humans: a review, Mar. Ecol. Prog. Ser., 350, 153–174, doi:10.3354/meps07093,
- 824 2007.
- 825 Purcell, J. E., Fuentes, V., Atienza, D., Tilves, U., Astorga, D., Kawahara, M. and Hays, G. C.: Use of
- 826 respiration rates of scyphozoan jellyfish to estimate their effects on the food web, Hydrobiologia,
- 827 645(1), 135–152, 2010.
- 828 Le Quéré, C., Harrison, S. P., Colin Prentice, I., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H.,
- 829 Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M.,
- 830 Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J. and Wolf-Gladrow, D.: Ecosystem
- 831 dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Chang.
- Biol., 11(11), 2016–2040, doi:10.1111/j.1365-2486.2005.1004.x, 2005.
- 833 Le Quéré, C., Takahashi, T., Buitenhuis, E. T., Rödenbeck, C. and Sutherland, S. C.: Impact of
- climate change and variability on the global oceanic sink of CO2, Global Biogeochem. Cycles, 24(4),
- 835 1–10, doi:10.1029/2009GB003599, 2010.
- 836 Le Quéré, C., Buitenhuis, E. T., Moriarty, R., Alvain, S., Aumont, O., Bopp, L., Chollet, S., Enright,
- 837 C., Franklin, D. J., Geider, R. J., Harrison, S. P., Hirst, A., Larsen, S., Legendre, L., Platt, T., Prentice,
- 838 I. C., Rivkin, R. B., Sathyendranath, S., Stephens, N., Vogt, M., Sailley, S. and Vallina, S. M.: Role of
- 839 zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles,
- Biogeosciences, 13, 4111–4133, doi:10.5194/bgd-12-11935-2015, 2016.
- Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G.
- 842 C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D. and Wang, F.:
- Observations: Ocean, edited by T. F. Stocker D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J.
- 844 Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, Cambridge University Press, Cambridge,
- United Kingdom and New York, NY, USA., 2013.
- 846 Richardson, A. J. and Gibbons, M. J.: Are jellyfish increasing in response to ocean acidification?,
- 847 Limnol. Oceanogr., 53(5), 2040–2045, 2008.
- 848 Rosa, S., Pansera, M., Granata, A. and Guglielmo, L.: Interannual variability, growth, reproduction
- and feeding of Pelagia noctiluca (Cnidaria: Scyphozoa) in the Straits of Messina (Central
- Mediterranean Sea): Linkages with temperature and diet, J. Mar. Syst., 111, 97–107,

- 851 doi:http://dx.doi.org/10.1016/j.jmarsys.2012.10.001, 2013.
- 852 Sarmiento, J. L., Dunne, J., Gnanadesikan, A., Key, R. M., Matsumoto, K. and Slater, R.: A new
- estimate of the CaCO 3 to organic carbon export ratio, Global Biogeochem. Cycles, 16(4), 54-1-54-
- 854 12, doi:10.1029/2002gb001919, 2002.
- 855 Schnedler-Meyer, N. A., Kiørboe, T. and Mariani, P.: Boom and Bust: Life History, Environmental
- Noise, and the (un)Predictability of Jellyfish Blooms, Front. Mar. Sci., 5(257),
- 857 doi:10.3389/fmars.2018.00257, 2018.
- 858 Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. and Lancelot, C.: Phaeocystis blooms in the
- global ocean and their controlling mechanisms: a review, J. Sea Res., 53(1), 43–66,
- doi:https://doi.org/10.1016/j.seares.2004.01.008, 2005.
- 861 Stoecker, D. K., Michaels, A. E. and Davis, L. H.: Grazing by the jellyfish, Aurelia aurita, on
- microzooplankton, J. Plankton Res., 9(5), 901–915, doi:10.1093/plankt/9.5.901, 1987.
- Timmermann, R., Goosse, H., Madec, G., Fichefet, T., Ethe, C. and Duliere, V.: On the representation
- 864 of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model, Ocean Model.,
- 865 8(1–2), 175–201, 2005.
- 866 Uye, S. and Shimauchi, H.: Population biomass, feeding, respiration and growth rates, and carbon
- budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan, J. Plankton Res., 27(3), 237-
- 868 248, doi:10.1093/plankt/fbh172, 2005.
- 869 Vogt, M., O'Brien, C., Peloquin, J., Schoemann, V., Breton, E., Estrada, M., Gibson, J., Karentz, D.,
- 870 Van Leeuwe, M. A., Stefels, J., Widdicombe, C. and Peperzak, L.: Global marine plankton functional
- type biomass distributions: Phaeocystis spp., Earth Syst. Sci. Data, 4(1), 107–120, doi:10.5194/essd-
- 872 4-107-2012, 2012.
- West, E. J., Pitt, K. A., Welsh, D. T., Koop, K. and Rissik, D.: Top-down and bottom-up influences of
- igllyfish on primary productivity and planktonic assemblages, Limnol. Oceanogr., 54(6), 2058–2071,
- 875 doi:10.4319/lo.2009.54.6.2058, 2009.

877

878

879